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The transition from weak to strong coupling in quantum chromodynamics is discussed using semiclassical
methods to calculate the effective coupling g(a) of an effective lattice theory as a function of a. We
demonstrate that the renormalization effects due to instantons cause a sharp transition from weak to strong
coupling in the range g(a) =~ 1.5-3. This is verified by showing that the “string tension” as well as the 8
function calculated by semiclassical methods match their strong-coupling behavior for g =~ 1.5-3. An
independent test of this notion is provided by a bag-model calculation of the string tension.

I. INTRODUCTION

In the past few years a reasonably simple picture
of the workings of quantum chromodynamics
(QCD) has emerged. It assigns different physics
to different distance scales by introducing the no-
tion of an effective coupling, g(d), governing the
quantum fluctuations on distance scale d. At
small distances, g(d) is small [in fact 1/g%(d)
varies as In(1/Ad) as required by asymptotic free-
dom] and the fluctuations are those of weak-cou-
pling perturbation theory. The effective coupling
grows with increasing d and beyond some critical
value, d, (presumably roughly equal to the size of
a typical hadron), it is assumed to become large
enough that the fluctuations are essentially those
of a strong-coupling lattice gauge theory. This
strong-coupling limit is automatically confining
and completely characterized by the string con-
stant, o, or the energy density per unit length of
the flux tube which joins any two separated
charges.

This picture of the limiting behaviors of QCD,
even if correct, in turn poses some difficult
physics problems. First, there is the issue of di-
mensional transmutation: The string constant of
the strong-coupling limit is dimensional; the only
dimensional quantity in the theory is the renor-
malization scale parameter, A, describing the
asymptotic-freedom variation of the coupling in
the weak-coupling limit; evidently it must be pos-
sible to establish a relation of the form o= ¢pA?,
where ¢ is a pure number, and to make a precise
numerical connection between the physics of weak
and strong coupling. Second, there is the problem
of computing the properties of hadrons: Almost
by definition, the scale size of a typical hadron

lies in the transition region between weak and
strong coupling, and no direct information about
light-hadron physics is provided by either of the
limits. To make progress on either of these prob-
lems, it is obviously necessary to understand the
details of the transition between weak and strong
coupling.

In previous publications’? we have shown that
weak-coupling nonperturbative effects (i.e., in-
stantons) cause a rapid increase in g(d) at a
rather sharply defined distance scale, d.. This
scale is small enough that one would normally
have thought that ordinary perturbation theory
would be accurate and g slowly varying. In fact,
over a small range in d, g(d) becomes so large
that weak-coupling methods of any kind, perturba-
tive or nonperturbative, cease to make sense.

The key question is whether at this point g is large
enough to put the theory in the strong-coupling li-
mit. If so, dimensional transmutation has oc-
curred, and we may identify the scale at which
instanton effects turn on with the hadron scale;

if not, - a further increase in g arising from instan-
ton-unrelated physics is called for and we do not
know how, even approximately, to identify the
hadron scale,

In the past we have simply assumed that the
former is true and shown that a reasonable-looking
picture of hadron physics, quite closely related
to the bag model, can then be derived. In this
paper we will present a series of arguments in
support of the assertion that instanton effects carry
the theory all the way into the strong-coupling re-
gime. Though they are not without their own prob-
lems, we believe the arguments presented here
put the semiquantitative picture of the QCD vacuum
and of hadron structure which we have advocated
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on a much sounder footing. We should say at the
outset, however, that everything in this paper ap-
plies strictly speaking only to the theory with 7o
light quarks. Massless fermions and chiral sym-
metry breaking pose special problems which we do
not know how to deal with in the present context.
For simplicity we stick to the unrealistic, yet in-
structive, theory of a pure gauge field with at most
static external color charges.

In order to connect the weak- and strong-coupling
domains it is particularly useful to construct an
effective lattice theory for QCD. Although in this
paper we shall not explicitly construct such an ef-
fective lattice theory, nor show how a mass gap
emerges, we explore, in Sec. II, the general qual-
itative aspects of this notion. Under the assump-
tion that QCD confines we discuss the structure of
the strong-coupling lattice theory, focusing special
attention on the Wilson term in the effective action.
We translate our continuum QCD bag picture into
this lattice theory and indicate how the radius of
the flux tube joining quarks can be deduced. Fur-
ther illustrations of some of the features of the
semiclassical bag in terms of the lattice theory
are presented in Appendix B. In Sec. III we deter-
mine the magnitude of the coefficient, g(a), of the
Wilson term in the lattice theory by evaluating the
effective coupling using semiclassical methods
that include the renormalization due to instantons.
We focus in particular on the behavior of the
“string tension” and the B function and demonstrate
that as the spacing of our effective lattice in-
creases these rapidly approach their strong-cou-
pling values, thus confirming that instantons do in-
deed bridge the gap, for g(a)~2-3, between weak
and strong coupling. Furthermore, we estimate
0 in terms of A, An additional argument that in-
stantons are responsible for the transition to
strong coupling is provided in Sec. IV where we
compare the string tension calculated by semiclas-
sical extrapolation to that of a strong-coupling
flux tube. The agreement of these two independent
calculations confirms our contention that the
strong-coupling region begins right at the point
where weak-coupling methods break down. Finally
in Sec. V we offer our conclusions as to the over-
all picture of the QCD. A discussion of the var-
ious coupling-constant definitions used in QCD,
and the relation between them, is presented in
Appendix A.

II. INSERTING A LATTICE IN THE FUNCTIONAL
INTEGRAL

Inserting a lattice into the functional integral is
a useful device for extracting some of the physics

of instantons. In this section we wish to explore
the general, qualitative aspects of this notion. The
detailed role played by instantons will be discussed
in the following section. In what follows, it will

be assumed that the theory confines and that the
usual lore about flux tubes, the behavior of strong-
coupling lattice theories, and so on is correct.

In principle it is possible to construct an exact
lattice theory by doing the continuum functional
integration with the link variables U= P exp(i f A
*dx) held fixed. The remaining integration over
the U’s defines, of course, an exact lattice theory.
A mathematical lattice of this kind could be con-
structed with any spacing, @, and by a judicious
choice of a one might be able to separate the ultra-
violet and infrared parts of the theory into, re-
spectively, the continuum and the lattice integra-
tions. In practice, however, such an approach
would be plagued with unsolved renormalization
problems associated with introducing the con-
straints into the continuum functional integral.

On the other hand, we can avoid this difficulty by
starting with the theory defined on a very fine
lattice, at the Planck length a,, say. Then accord-
ing to the usual lore (i.e., the notion of universal-
ity), if the action on this superfine lattice has the
Wilson form?®

1
Sw=gz—m07 <o

o >

=,2
g (ao) plaquettes

[Tr (I:[ U‘) +H. c.] , (@

with g "%(a,) ~ —(11/87%) InaA, it will turn out that
for small-enough a, we will have simply con-
structed the continuum theory with a particular
regularization scheme. Thus for all practical pur-
poses, if a, is taken to be small enough, the above
Wilson action can be taken to define QCD. Now
there is no conceptual problem with the notion of
integrating over the basic link variables keeping
compound U’s on a larger sublattice fixed. The
scale of this sublattice, a, can be any integer
times a,, and is for all practical purposes a con-
tinuous variable.

The end result of introducing such a lattice
would be the computation of an effective action

s =

a

7@ £, + “higher terms”, )
which contains all the information necessary to
answer any physical question that can be formu-
lated on this lattice. For reasons which will be
apparent later we have explicitly separated out the
single-plaquette Wilson term. However, except
in the limit ¢ — 0, where the “higher terms”
vanish, we do not mean to imply that these extra
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terms can be dropped. They are not negligible
and one of their roles is, in fact, to restore Lo-
rentz invariance on a finite lattice.

. On a sufficiently large lattice it is generally be-
lieved that (i) the expectation value of a planar Wil-
son loop becomes proportional to C¥[1+ O(1/
g%(a))], where C>1 and N is the number of pla-
quettes in the loop, (ii) the nominal strength of a
“higher term” involving % plaquettes is g %"(a),
and (iii) the strong-coupling expansion of the ac-
tione $=1-S+3S2++ can be used to compute
arbitrary expectation values. Under these condi-
tions the Wilson term is special in that, to leading
order in g"%(a), it completely determines the ex-
pectation value of all planar Wilson loops. The
proof is a standard strong-coupling argument
which will not be repeated here. We do wish to
emphasize, however, that the restriction to planar
loops is essential; for nonplanar observables the
“higher terms” can contribute in the same order in
g %(a) as does the Wilson term. The potential be -
tween a heavy quark-antiquark pair is a physical
example of a problem that can be formulated in
terms of a planar (Wilson) loop. (Indeed, it is
almost unique in this respect.) On the other hand,
the interaction between three or more quarks can-
not be deduced from the properties of planar (in
space-time) loops.

The fact that, for strong coupling, planar loops
are determined by the Wilson term implies .
that its coefficient g~%(a) satisfies a closed renor-
malization-group equation. This is most easily
derived by evaluating the expectation value of the
Wilson loop operator for a planar loop of area
A=Nd®. Inthe strong-coupling limit this has the
value

(W)=exp(-Ac)= <§21§7)) ! [1 + O(ngl(,}"))] , (3)

where

_In3g%(a) 1
o="—"23 + o(gz(a)) (4)

is the energy per unit length of the string connect-
ing the quarks or the string tension. The a depen-
dence of the (strong coupling) lattice coupling
g%(a) is derived by demanding that ¢ be indepen-
dent of @. This yields

1 dg(a)
gla) dina

=1n3g2%(a) + O(gz—:a)) . (5)

At the other extreme of weak coupling the “higher
terms?” actually vanish and again one obtains a
closed renormalization-group equation for g2(a).
It is of course just the usual asympto'tic-freedom
result* that

_1 dgla) 11
gla) dlna ~ 1672

g%a)+0(g*)). (6)

Because g(a), defined to be the coefficient of the
Wilson term in £,, renormalizes in a simple way
for both weak and strong coupling we propose to
define B (with opposite sign to the usual convention)
as

dgla)
dlna

=p(g@)). (7)

At intermediate values of the coupling there is
nothing particularly unique about this definition of
B, and it should not be expected to agree in detail
with B functions defined in other physically reason-
able ways.

The weak- and strong-coupling curves for B/g
are shown in Fig. 1. For weak coupling the
strength of the (unique definition-independent)
order-g* term® has also been indicated and for
strong coupling the size of the next-to-leading
term arising from (1/g?)&, is also shown. The
latter is less significant since the true correction
to the strong-coupling limit involves the effect of
unknown “higher terms.” Note that there is a re-
gion in g, roughly 1 <g <4, where both expansions
would appear to be valid but which give quite dif-
ferent values of 8.° One of the aims of this paper
is to resolve this apparent paradox. To anticipate
later results, we find that nonperturbative instan-
ton effects cause the weak-coupling B to break
sharply away from the perturbative curve at g=~1
and rise rapidly up to the strong-coupling 8. This
is indicated schematically by the dashed line in
Fig. 1. : '

The physical manifestation of confinement is the
existence of tubes, or “bags,” of trapped color flux
connecting heavy quark-antiquark pairs. This
basically continuum notion has certain conse-
quences for the effective lattice theory. Normally
the strong-coupling lattice theory is said to lead
to a string picture. This is questionable since
within a lattice theory, of spacing a, it is impos-
sible to distinguish an infinitely thin string from a
flux tube of diameter a. We shall, however, show
that the bag picture has a precise analog within the
lattice theory.

In what follows, we will consider a time slice of
the lattice and concentrate on the spatial links.
Figure 2 shows a flux tube of radius R upon which
a lattice with spacing 2R has been superimposed.
On this lattice the flux tube is represented by the
single chain of links running down its center, since
all other links are either in the wrong direction
or lie outside the tube. The collapse of the entire
flux onto a single link is of course just the picture
that emerges from the strong-coupling expansion.
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FIG. 1. Plot of 8 /g =dlIng(a)/dlna as a function of g for weak and strong coupling. The solid curves are the weak-
and strong-coupling curves to lowest order (1) and to second order (2), respectively. The dashed line is a schematic

representation of the effect of instantons.

We can therefore infer that on this lattice the cou-
pling is strong. It is also true that the energy per
unit length of the tube is determined entirely by
Sy and is in fact just the string tension given by
Eq. (4).

The bag picture also implies that the effective
action must contain for ¢ =2R, non-negligible
“higher-order” terms. Consider putting a quark-
antiquark pair on diagonal corners of the lattice.
Figure 3 shows a flux tube connecting these quarks.
Note that there are now no links lying entirely with-
in the tube. Nevertheless the coupling is strong
and the apparent paradox is resolved by the fact
that for this diagonal flux tube the Wilson term is
irrelevant and the entire contribution comes from
the “higher terms.” (Note that this diagonal flux
tube cannot be specified by a space-time loop
which is both planar and lies everywhere on the
lattice.) Another situation where “higher terms”

50 U A Y SR U S i

FIG. 2. A flux tube of radius R connecting a quark-
antiquark pair overlaid with a lattice of spacinga =2R.

are important is illustrated by the ¢gqq configura-
tion shown in Fig, 4. Here the kinematics are con-
sistent with a simple lattice picture but the two
flux tubes are in contact, suggesting that a descrip-'
tion in which they are collapsed onto disjoint links
will not be adequate. Thus the continuum picture
of QCD which leads to the formation of flux tubes
of radius R can be translated into an effective
strong-coupling lattice theory with a spacing
a = 2R, whose coupling g~%(a) (the coefficient of
the Wilson term) can be calculated from the ten-
sion of the flux tube, and whose “higher-order”
terms can, in principle, be evaluated.

We shall now show that the radius of the flux
tube, and the thickness of the tube wall can be re-
lated to the spatial dependence of g%(a). Consider

TN

q +
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FIG. 3. A flux tube of radius R connecting a quark-
antiquark pair on diagonal corners of a lattice of spac-
inga=2R. :
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FIG. 4. A two-quark—two-antiquark configuration on
a lattice of spacinga=2R.

a flux tube, as shown in Fig. 5, overlaid with a
lattice of spacing a= R rather than 2R. There are
now five parallel chains of links within the tube,
the original one at the center and four (in three
dimensions) just inside the boundary. On the lat-
tice the flux is clearly spread out over several
links, and it must be that the coupling g *(R) is
weak., In terms of the 8 function of Fig. 1 we have
thus seen that for a lattice spacing equal to the flux
tube radius R the coupling has just become weak
and one is just below the rise in B, while for a
lattice spacing 2R the theory is well into strong
coupling. This is consistent with the strong-
coupling behavior of g2(a), since

g%(2R)=5exp[41n3g2(R)],

and thus if, say, g(R)=1.5 then g(2R)=26,

If, as we shall argue in the following, instan-
tons are indeed responsible for the sharp transi-
tion from weak to strong coupling, we will be able
to relate the radius of the flux tube to the renor-
malization scale parameter A, and to compare the
string tension of the continuum bag picture with
that of the effective lattice theory.

Furthermore, we can also discuss the thickness
of the flux tube wall, which is related to the rate
at which the coupling rises from weak to strong
values. When this transition is rapid (as we shall
see it is) the wall will be thin and the flux tube
sharply defined.

One can do further calculations which make the

FIG. 5. A flux tube of radius R connecting a quark-
antiquark pair overlaid with a lattice of spacinga=R.
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connection between the strong-coupling lattice and
continuum flux tubes even more explicit. Although
interesting in their own right these results are
somewhat peripheral to the present paper and have
been relegated to an appendix (Appendix B).

III. THE EFFECT OF INSTANTONS

Roughly speaking, the form of the lattice action,
£,({U,}) is determined by the quantum fluctuations
of the continuum theory on scales less than a. For
small-enough a, the quantum fluctuations are those
of perturbation theory and £, is just the Wilson
action with a coupling constant which varies with a
according to asymptotic freedom. Previous work
on the Euclidean semiclassical method has shown
that the first new effects to appear, as we increase
the limiting scale size, are those due to instan-
tons.? There will therefore be some range of
scale sizes over which £, is determined by instan-
ton and perturbation theory effects alone, and we
should be able to compute the diagnostic quantities
B and o defined in Sec. II and study their deviation
from perturbative behavior. If we increase g too
far, £, will be determined by more complicated
configurations than instantons, and we will no long-
er be able to compute £, with any accuraey. Be-
fore that happens, however, we shall present
evidence that the system has already reached the
strong-coupling limit, allowing us to use strong- .
coupling methods at larger scales.

To actually evaluate £, in the manner described
in Sec. II would be a monstrous job, which could
only be done numerically. Since we are trying to
develop insight, we will employ shortcuts whose
accuracy can be only imperfectly evaluated, but
which should give us a reasonably accurate pic-
ture of the physics. '

To compute £, we hold the link variables {U;}
associated with the a lattice fixed and integrate
over all the configurations of the primitive lattice
consistent with the choice of {U‘}. Since the primi-
tive lattice is just a special way of introducing a
cutoff into the continuum theory, it will have rec-
ognizable multi-instanton configurations, and it is
precisely over these configurations that we want
to integrate. Instantons of scale size significantly
larger than a clearly are not relevant since they
can be specified by imposing a suitable variation
on the link variables of the a lattice. Instanton
of scale size smaller than a, as long as they are
not too dense, have a simple effect which can be
summarized by a modified vacuum permeability,
K, whichisgreater than one and can be calculated
in a dipole gas model. In the present context we
make the reasonable assumption that the effect of
u is seen directly in a multiplicative renormaliza-
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tion of the coupling constant associated with the
Wilson action: g?%(a)=g,r (a)u(a) (where g,r is the
perturbation-theory, or asymptotic-freedom,
coupling constant). In the formulas which were de-
veloped in earlier papers,?.u is determined by an
integration over instanton scale sizes, and we must
now decide where to cut this integration off (though
it seems obvious that the cutoff should be in the
neighborhood of instanton scale size equal to a).

The best information we have on this question
comes from our study of instanton effects on the
heavy-quark potential.” There, rather than fixing
link variables, we put a Wilson loop into the func-
tional integral and integrated over dilute-instanton-
gas configurations. The interesting point is that
if the diameter of the Wilson loop was taken to be
more than 1.5 times the instanton scale size, the
result of the computation was indistinguishable
from that which would have been obtained by ig-
noring the instantons and renormalizing the per-
turbation-theory coupling constant by a 4 com-
puted according to our dipole-gas arguments. At
the same time, if the Wilson loop diameter was
taken to be less than about one times the instanton
scale size, the result of the computation was very
accurately equal to the extrapolation of the zero-
size Wilson loop limit. In our context we take
these results to mean that, in computing £,,
(a) instantons of scale size less than 2a may be
assumed to renormalize the Wilson action coupling
constant by our standard dipole-gas formulas, and
(b) instantons of scale size greater than a can be
neglected since they are obtained by subsequent
integration over the link variables {U;}. Wehaveno
a priovi way of knowing how to include the fluctua-
tions on scales intermediate between these two li-
mits. For lack of anything better to do we shall
assume that this ignorance can be compensated
for by setting the upper limit on the instanton
scale-size integration in u not at Za but at some
value, a,, between 3a and a. We will see that this
uncertainty does not materially affect the overall
physical picture we are proposing, but does lead
to some looseness in our numerical solution of the
dimensional-transmutation problem. Presumably
this uncertainty could be eliminated by a major
lattice calculation in the manner of Wilson.®

With these preliminaries out of the way, we are
ready to construct g(a), B(g), and o(g) in the in-
stanton-dominated regime. The basic formulas,
culled from the previous discussion and our earl-
ier papers,® are

8n? 1
g%a)=g 45 (a@)u(a) ) xu(a)zm =1lln4—,

8)

2 a
pla)=n+ (142072, n=Tr [ 722 D(ohepe(),
o

where D(p) is the instanton density function and A
is the asymptotic-freedom renormalization scale.
Of course these expressions are usable only so
long as a, is small enough that the integrated in-
stanton density,

_ 2 [dp
f—?rfo 2D(p),

is less than one—otherwise our instanton-gas ar-
guments would not work. We will shortly deter-
mine the limiting values of a and g{a).

To make an explicit computation we must specify
D(p). In the weak-coupling limit,

D(p): CxAF(p)Se-x‘F(ﬂ)’

where the coefficient C depends on the definition of
the QCD coupling constant in a manner which has
been discussed elsewhere.? In our approach,
everything is based on a lattice regularization of
the field theory and we must be careful to use the
corresponding coupling-constant definition to com-
pute C. It is not too hard to show (the arguments
are given in Appendix A) that C so computed equals
1.62 x 10°, The large value of this coefficient

does not have any direct physical content—it mere-
ly causes instanton-induced effects of a given size
to occur at a smaller value of g than for a coupling-
constant definition in which C is not so large (for
example, dimensional regularization yields C
~100). Since g itself does not have any invariant
significance, this should not bother us, but we do
have to remember to use the same coupling-con-
stant definition consistently throughout our cal-

" culation. Given our basic aim, the lattice defini-

tion (or regularization) of the coupling is clearly
called for, but we must bear in mind that this is
not the definition used in most applications of QCD
when we wish to compare our numbers with exper-
iment or with other calculations. The relation be-
tween the couplings in various regularization
schemes is discussed in Appendix A.

It is now a simple matter of numerical computa-
tion to compute the diagnostic quantities B(g) and
o(g). The result for B(g) is plotted in Figs. 6(a)
and 6(b). The two cases correspond to the choices
a,=3%a and a,=a for the instanton scale size cut-
off. The solid line is the computed value of B(g)
and terminates where the integrated density of the
instantons responsible for coupling-constant re-
normalization is order one (the approximations we
are making can no longer be trusted beyond this
point).® The dashed lines are for comparison and
show the strong-coupling and weak-coupling limits
of B. The salient feature of both plots is the rapid
rise of B, at g roughly equal to one, away from
the weak-coupling curve. The difference between
the two cutoff choices is simply a slight shift in



g(_)_ INSTANTONS AS A BRIDGE BETWEEN WEAK AND STRONG... 3285
Brg (a) :
6
— -—
S — c/oU"“\“G
— /S‘RONG
4
3
2
|
1 1 | |
6 7 8 9 q
53 54 57 10%aA
Brq
(b)
6..
-—
5 —_
-
— /“G
— oo
(]
41 /519,0
3_
2._
I_
1 | | ] 1
© 5 6 7 8 S g
23 27 3 32 34 35 365 375 385 10aA

FIG. 6. (a) A plot of B/g due to instantons as a function of g and a for the choice a, =%a
the strong coupling and the perturbative values of B/g, respectively,

The dashed lines represent
(b) A plot of B/g due to instantons as a function of

g and a for the choice @, =a. The dashed lines represent the strong coupling and the perturbative values of g8/g, res-

pectively.

the value of g at which the nonperturbative in-
crease in B occurs. The value of a at which the
transition from weak- to strong-coupling behavior
occurs, a, does depend (linearly) on our choice of
a,. Equally interesting is the fact that in both

c

cases the overall increase in B (before our instan-
ton computation breaks down at g~3.5) is enough
to bring it up to the strong-coupling curve. We
take this as strong evidence that instanton effects
carry the system all the way to the strong-coupling
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regime —after all, the increase in 8 need not have ticularly interesting quantity in the weak-coupling
been large enough to match the strong-coupling limit, but must approach a constant in the strong-
curve. To make the argument conclusive, one coupling limit, if we are to recover the large-
would have to show that, for g>3, B continues to distance properties of the strong-coupling lattice
follow the strong-coupling curve. We shall come theory. That constant must be of the form ¢A?,
back to this point in the next section. where A is the asymptotic-freedom renormaliza-
It is also useful to plot the string tension, de- tion scale parameter and ¢ is a pure number re-
fined to be o(g)=1n3g2(a)/a®. This is not a par- flecting the outcome of dimensional transmutation.
o
7+ (a) ~
.6 .
S5+ .
Ty —
3 _
vl o .
1 -
1 1 ] 1 1 1 1 il 1
1 2 3 4 5 6 7 8 9 g
3.2 4 43 48 5 53 5.4 5.7 10%aA
o9
(b)
8r
Tr
6r
S5+
4r
3r
{ 1 | 1 1 1 1 1 1

| 2 3 4 5 3 7 8 9 9
23 27 3 32 34 35 365 375 385 [0%A

FIG. 7. (a) A plot of the string tension ¢, in units of 10* A%, due to instantons as a function of g and a for the choice
=%a (b) A plot of the string tension ¢, in units of 10? Az, due to instantons as a function of g anda for the choice a,
=a.



20 INSTANTONS AS A BRIDGE BETWEEN WEAK AND STRONG... 3287

The result of the computation is plotted in Figs.
7(a) and 7(b), the two cases corresponding to the
two choices of upper cutoff on instanton scale size.
Just as in Fig. 6, the computation is to be regarded

as reliable only up to g~3.5, although we have
plotted o beyond that point. Note first of all that

o seems to settle down to a constant quite rapidly
and to do so within the instanton-dominated regime.
Since constant o is a sign of strong coupling, we
take this as another piece of evidence that instanton
effects drive the system to strong coupling. Also,
in this way of plotting things, we see an apparently
large effect of changing the instanton scale size
cutoff from %a to a—the limiting value of the string
tension goes from 1700A% to 3700A%, This is some
measure of our lack of precision in solving the
dimensional -transmutation problem—if A is
thought of as having been determined from scaling-
violation measurements, then the predicted value
of the string tension is uncertain by a factor of 2
or so. This factor is, of course, simply the
square of the uncertainty (1.5) in our choice of «a,.

In this context, it must be remembered that the
A we are using is that appropriate to lattice regu-
larization, A, and is not the same as the A com-
monly used by experimentalists in discussing scal-
ing violations, According to the discussion of Ap-
pendix A, A, is in fact much smaller than that em-
ployed in regularization schemes used to compare
with experiment. If, as according to Ref. 10, we
take A,,, to be the momentum-space scale parame-
ter A,, then indeed A=A, /14, and thus in this
scheme o~[(3-4.3)A,F.

It is difficult to compare this with the measured
value of ¢ [which is related to the Regge slope o’
byo=1/@2mra)= (420 MeV)?] since we have ignored the
effect of light quarks. It seems clear, however,
that the inclusion of light quarks will, according
to our picture of QCD, lead to a decvease in the
value of o, This is because the presence of light
quarks increases the scale size at which instanton-
induced effects turn on, since these are small until
one probes distances over which the quarks ac-
quire a reasonably large dynamical mass.™® A
very rough estimate of this effect doubles the value
of @ at which the transition from weak to strong
coupling occurs. Since 0@ 2, this means that
(roughly) in the real world o=[(1.5-2)A, * and
thus A, =210-280 MeV, which is quite reasonable.

Thus we have seen, in a precise quantitative
sense, that instantons bridge the gap between weak
and strong coupling, by causing the effective lat-
tice coupling to increase sharply at a specific val-
ue of the lattice spacing @ and at that point to be-
have as a strongly coupled lattice theory. Our sol-
ution of the dimensional-transmutation problem
consists of calculating the value of @ and g(a) in

terms of A and thus, since we immediately go over
to strong coupling, the resulting string tension ¢
in terms of A, Although the answer is not very
precise it is quantitatively reasonable.

IV. THE SEMICLASSICAL AND STRONG-COUPLING
FLUX TUBES

If QCD is confining (and we assume it to be),

“then, for sufficiently large g, B(g) must equal its

strong-coupling limit, B,,=1n3g?, and o(g) must
equal a constant, o,,. The arguments presented
above show that, in the coupling-constant range
from g ~1to g =3, Band o undergo a transition
from perturbation-theory behavior to something
qualitatively quite different. Moreover, we saw
that it was consistent, in a precise quantitative
sense, to imagine that 8 and o were smoothly
joining on to their strong-coupling limits at g ~3.
If true, this is very important since it means that,
by pushing weak-coupling and semiclassical meth-
ods to the extreme we can make quantitative cal-
culations of strong-coupling quantities. It is
therefore important to give as much support as
possible to this view. In this section we will
present another, quite independent, consistency
argument for the assumption that strong-coupling
behavior sets in at g=3. Our method will be to
use the bag picture to establish some properties
of the passage between weak and strong coupling
and to show that they fit the picture developed
above.

In the bag model, widely separated static color
charges are joined by a stationary flux tube of
some finite radius, R. Such flux tubes correspond
physically to the strings of the strong-coupling li-
mit of a lattice theory. In Sec. II we argued that
our effective lattice action, £,, evaluated at a
=2R, must be in the strong-coupling phase because
only one lattice link at a time can overlap a flux
tube. At the same time, £, should be just leav-
ing the weak-coupling region since a single flux
tube can then overlap two links at a time and there
must be reasonably strong correlations between
nearest-neighbor links. Therefore, on general
grounds we expect the flux tube diameter to be
about twice the lattice spacing at which the instan-
ton effects fivst turn on stvongly.

We can use these geometrical remarks to gen-
erate two alternative, and presumably reasonable,
evaluations of the flux tube radius from our plot
of B(g). If we define R to equal the value of a at
which instanton effects first turn on and agree
that they have turned on when B/g equals twice its
weak -coupling value, we get R=0.029A! (R
=0.019A"Y) from Fig. 6(a) (Fig. 6()). If we de-
fine R to be half the smallest value of a for which
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B/g is unambiguously in the strong-coupling region
and define that value of @ by the point where B/g
crosses the strong-coupling curve, we get R
=0.02A7* (R=0.014AY) from Fig. 6(a) (Fig. 6()).

The difference between the numbers extracted
from Fig. 6(a) and Fig. 6(b) is just a reflection of
the uncertainty in our solution of the dimensional -
transmutation problem (which we have represented
by two possible choices of instanton scale size
cutoff.) The difference, for a given choice of cut-
off, between the two definitions of R, is presum-
ably a reflection of the fact that the flux tube wall
is not infinitely thin. Indeed, our results suggest
that its thickness is approximately one-half the
flux tube radius, which is thin enough for bag ar-
guments to make sense. For the purposes of the
following bag argument, we will take as our esti-
mate of the flux tube radius the average of the
values corresponding to the two definitions

{0.02451\-1 {%a
0.0165A"!

©)

a,= .
a

For a>2R, £, is definitely in the strong-coupling
region and we have the relation

2
se lr%_@ ’ (10)

where o, is the string constant of the flux tube.
We have already computed o,, using our assump-
tion that for g =3 the system is in strong coupling.
We now wish to compute o,, from the bag picture
and see that we get the same result. This is a
test of the contention that instantons do indeed
bridge the gap to strong coupling already at g=3.

In the bag model, the basic equations governing
a color-triplet flux tube are

o=energy density per unit length

= é E 2 x (flux tube area), (11)

o

E,x (flux tube area) = Qg,?,

where E_ is the (critical) electric field in the flux
tube, Q=(%)"/? and g, is the perturbation-theory
coupling constant describing the coupling of a
static charge to the static color field inside the
flux tube. Thus

o X (flux tube area)= % g, . (12)

The value of g, is determined by the size of the
flux tube (in units of A™) which is why we went to
the trouble to determine the flux tube radius in
terms of A in the previous paragraphs. The de-
tailed computation of g, is given in Appendix A,
where we show that 872%/g,2~30. Since 87%/g;

depends only logarithmically on A, our dimension-
al-transmutation uncertainty of a factor of V2 in A
translates into just a 10% uncertainty in gg’.

Since we now know both the flux tube radius and
g, (computed consistently with that radius), we can
use Eq. (12) to evaluate the bag-model string con-
stant. We find that

{19251&2 ; {%a 13)
Q. = or a.—= .
e 37292 ¢ a

These values are very close to the corresponding
values of 0,,=1700A% or 3700A* obtained in the
preceding section. Since o is a quadratic function
of A it is very sensitive to slight changes in scale,
and the above agreement is very satisfying. The
bag computation is applicable, of course, only in
the strong-coupling limit. The fact that it agrees
with the semiclassical calculation, extended to
this region, gives further support to our contention
that the strong-coupling region begins right at the
point where weak-coupling methods break down,
i.e., at g=~3. '

V. CONCLUSIONS

Let us now take stock of what we have accom-
plished. The aim of our discussion has not been
to prove confinement but, assuming confinement,
to show that everything we know about QCD is con-
sistent in precise numerical sense with the notion
that semiclassical effects (i.e., instantons) bridge
the gap between weak- and strong-coupling physics.

In our earlier attempts to apply semiclassical
wisdom to hadronic physics, we simply assumed
that this notion was correct. In particular, in our
QCD bag-model computations, we set the bag con-
stant, by hand, equal to the integral over instanton
contributions up to a scale size corresponding to
integrated instanton density equal to one. This is
tantamount to assuming that fluctuations on scales
larger than this are safely in the strong-coupling
regime, and need not be included in the bag con-
stant. Indeed a simple strong-coupling argument
shows that the vacuum energy density, or the bag
constant, due to fluctuations on a lattice with cou-
pling g(a) are of order [1/3g%(a)]?. Although the
consequences of this assumption were physically
reasonable, we in fact did not have direct evidence
for it.

The arguments presented in this paper are in-
tended to show that the basic assumption of our
QCD bag model meets several consistency checks
of a fairly precise nature. The price we have to
pay in order to be able to formulate the consisten-
cy checks in the first place is the introduction of a
comparison lattice theory into the continuum theo-
ry. Since the strong-coupling limit of a lattice
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theory is. well understood, we have simple and
precise strong-coupling limits against which to
compare the behavior of the comparison lattice
theory. Our interesting discovery is that the in-
clusion of weak-coupling semiclassical effects
alone is sufficient to make the comparison lattice
theory behave in detail in the same way as a
strong-coupling lattice theory.

This also lends credence to the point of view that
the structure of the QCD vacuum consists of two
components; coherent fluctuations on a scale less
than a which are describable by semiclassical
(weak-coupling) techniques and random fluctuations
on a scale greater than @ which are describable by
strong-coupling techniques. If this is the case
then one need not worry about the quantitative con-
tribution of other coherent fluctuations (such as
mesons, vortices, etc.) since they will, most
likely, be washed out in the chaotic fluctuations
of the strong-coupling phase. )

On the other hand, a lattice theory, because it
destroys Lorentz invariance, is not useful for
discussing detailed hadron physics questions, and
our conclusions in this paper are necessarily of
an academic nature. The one physical quantity
which can easily be studied in the strong-coupling
limit is the static string tension, o, and we were
in fact able to compute it in terms of the asymp-
totic- freedom renormalization mass, A. As
should be the case, we find essentially the same
relation between o and A as we did in the QCD
bag-model calculation even though the two methods
are superficially quite different. Although this
“solution” of the dimensional-transmutation prob-
lem is very pleasing, it is not terribly precise,
largely because of our uncertainty about the pre-
cise manner in which a comparison lattice of a
given scale size cuts off the integration over in-
stanton scale size in the continuum theory. This
is a very difficult problem, but one which could in
principle be solved.

More generally, if we are to make predictions
for hadronic properties other than the string ten-
sion, we will have to learn how to use what we have
found here to refine the QCD bag model. Before
even beginning to tackle this problem we will have
to deal with the major omission of our discussion—
light fermions. With massless or very light fer-
mions in the theory, the passage from weak to
strong coupling and the breaking of chiral invar-
iance become inextricably entwined. A compari-
son lattice method would therefore have to deal
correctly with spontaneous fermion mass genera-
tion and Nambu-Goldstone bosons. At the mo-
ment, we donot know how to do this and therefore can-
not make detailed comparisons with the real world.

Let us reiterate that if we have constructed a

convincing overall picture of the behavior of QCD,
it is because we knew how to characterize the ex-
pected large-distance behavior of the theory —we
simply assumed it to be that of a lattice gauge
theory in the strong-coupling limit. There are
variants of QCD for which we do not know how to
characterize the large-distance behavior and for
which we therefore have no way of establishing an
overall picture. We have already mentioned the
example of QCD plus massless fermions—although
we believe this theory to be confining, because of
chiral-invariance difficulties we do not know how to
characterize its large-distance behavior. A
somewhat more exotic example is the case of
QCD without fermions, but with a large vacuum
angle, 0. If we take 6> /2, it is not hard to see
that weak-coupling semiclassical effects, instead
of causing the coupling strength to increase with
increasing scale size, actually cause it to de-
crease. This means that instantons, for 6> /2,
screen the color fields produced by quarks. It is
then far from obvious that the large-distance be-
havior of the theory is confining. Perhaps for a
range of 0 the theory chooses the Higgs mecha-
nism. At the moment, we can only speculate.
Finally, we should mention the work of Kogut,
Pearson, and Shigemitsu (KPS)' from which we
drew a certain amount of inspiration. These
authors have attempted to construct the 8 function
of QCD by using Padé methods on the strong-cou-
pling expansion of the Wilson action. The aim is

" to see that the strong-coupling 8 function smoothly

joins the asymptotic-freedom limit, without going
through a zero. In fact, they have carried the ex-
pansion far enough to see a clear turnover toward
the weak-coupling form of 8. Furthermore, their
results indicate that the passage from weak to
strong coupling occurs quite rapidly, over a range
of scale sizes of order a factor of 2 or so, and for
values of g in the neighborhood of 1. Although
there is no reason for the KPS B function to agree
with ours in detail in the transition region, it
should contain the same information about the
nature of the passage from weak to strong coupling.
It is apparent that the two methods do agree, on
at least a superficial level, and we take this as
welcome further evidence that we are on the right
track. In the context of our remarks about QCD
with nonzero 6 (i.e., that qualitatively different
physics may emerge if we choose 6 > 7/2) this also
suggests that it might be interesting to do this
type of calculation for a strong-coupling lattice
theory with nonzero 0.
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APPENDIX A

There are a number of ways to define the cou-
pling constant in QCD. An example is dimensional
regularization with minimal subtractions. Any
other coupling g,% can be expressed as a power
series in the dimensional coupling gp*

@
gAzngz"'g—nz' gt (A1)

where the coefficients @, ... are finite numbers.

Equivalently one can write

872 872

—=—7-a+0 A2

gAZ gD (gD 3 ( )
or

1

Xp=Xp—0C +—()<;;> . ([\3)
For the effective coupling constants, x,(p)
=111n(p/A4) and x,(p)=11(p/Ap), Eq. (A3) im-
plies

AA _ i

™y ﬁexp<11 ) (A4)

Thus to leading order one sees that a change from
one definition of g to another is simply equivalent
to a change in scale.

In a given calculation it is appropriate to define
g so that the physics is as clear as possible. For
example, in processes that emphasize a particu-
lar (spacelike) momentum p, the “momentum sub-
tracted” coupling g,° is preferable. I is defined
in such a way that the gluon propagator satisfies

D (p)=g

2
i g—”ﬁép—) + gauge terms, (A5)

and has the virtue that at p the strength of the
(linearized) interaction is known. Celmaster and
Gonsalves!® have shown that

£ ~5.83. - (A6)

Another useful definition is the Pauli-Villars
coupling gpy? used by ’t Hooft in his calculation of
the instanton determinant.? ’t Hooft showed that

APV

A, =2.75. (A7)

When comparing with lattice theories one should
use the bare coupling g,>= -87%/(111naA;) on a
lattice of spacing a. A calculation of the exact
value of A, (i.e., its relation to Apy or to Ap)
would be an extremely tedious task and we will

content ourselves with an estimate (accurate to a
few percent) based on the comparison of the inte-
gral fd"p/p“ as regulated by a lattice and by the
Pauli-Villars scheme. Numerically, we find

n? P;a
2

r/a .

()ffff[

-r/a

fd"p[ T +u)]:lnM.a—1.89,
(A8)
and thus obtain the estimate
Aev _exp(1.89)=6.6. (A9)
AL

Finally, it remains to specify the weak coupling
inside a bag or flux tube. The physics depends on
this coupling only through the linearized gluon
propagator in the bag, and it follows that we should
take it to be g,*(p,), where p,is a typical mo-
mentum encountered on inverting the Laplacian &
in a bag. For a flux tube the eigenvalues of A can
be written as p,? +p,® where p, and p, are the radial
and longitudinal momenta. The longitudinal eigen-
values satisfy J,(p,R)= 0 and the lowest relevant
one is p,=3.85/R. (The trivial solution p,=0
corresponds to a constant color electric field and
cannot affect a color-singlet state.) To estimate
P, we note that the way g enters into the calcula-
tion of the string tension is through the solution

of Gauss’s law at the end of a flux tube, a roughly
spherical calculation. This suggests that we

take p,*~3p,? yielding the estimate 4.72/R for p,.
The value of g, given in the text is obtained by
converting the estimate of the bag radius given in
Sec. IV in terms of the lattice scale parameter to
R=~0.34A," or 0.23A,™", and using asymptotic

freedom
871 Py 4,72
P ~111n AM ~11ln =—— RA (A10)

to obtain 87%/g,2 ~29 or 33, respectively.

APPENDIX B: FLUX TUBES, IMAGINARY ELECTRIC
FIELDS, AND STRONG-COUPLING EXPANSIONS

In this paper we have discussed various proper-
ties of color flux tubes in the context of both the
continuum theory and the strong-coupling theory.
There are some issues, which were a source of
possible confusion, with our earlier treatment
of the bag model? which can be clarified with the
help of this new machinery. Most notably in our
Euclidean picture there appeared a cokevent
(apart from the averaging needed to form a color
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singlet) imaginary electric field inside the bag,

along with an incohevent veal field outside the bag.
Although somewhat outside the line of development

of this paper, we would like to show how some of
the peculiar features of our continuum bag model
appear in a recognizable form in the ‘strong-cou-
pling lattice theory. '

To explore the properties of the bag in the lattice

theory, we can consider expectation values of an
operator O in the presence of a Wilson loop L

0y, = Jlavleswtr(m,, U)O
f[dU]e'sWtr(H,eLU‘)

(

We shall choose the lattice so that g(a) is large,
and assume that the loop L is large and planar,
According to the arguments of Sec. II the lattice
manifestation of the continuum bag is the flux
sheet across the (planar) surface spanned by L.

We can now study the field strength in the pre-
sence of the Wilson loop by evaluating the expec-
tation value of

-CW::tr[H (U‘)+H.c.]
4

on various plaquettes. It is a straightforward ex-
ercise in the strong-coupling expansion to show
that

(B1)

3g%(a) if the plaquette is
coplanar with
Hew)p= { and inside L (B2)

0(1/3g%(a)) otherwise.

Here one clearly sees the existence of a sheet of
flux across L. Note that since trU <3 the average
of 3£, with a positive real weight must satisfy
(3£, <2. L is the phase introduced by the Wil-
son loop that allows (3£, to grow like 3g *(a) for
large g(a). This behavior, G£,),~ 3g%@), can
equivalently be thought of as due to a coherent
imaginary electric field inside the flux sheet that
spans the loop L. .

It is also interesting to consider (£,), for a
plaquette outside of but close to the flux tube. If
the quasilinear calculations of Ref. 2 are pushed
into a region where they have no reason to be val-
id, namely into the strong-coupling phase outside
the tube, then one would conclude that near the
tube there is a coherent imaginary field in addi-
tion to the real fluctuating fields. (This is since
instantons, by themselves, produce a large but
finite 1.) Since there is no trace of this extended
imaginary field in the strong-coupling calculation,
i.e., Eq. (B2), we conclude that it is an artifact of
having pushed a linear calculation into a region
where it is not valid.
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